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How Slowly Can Quadrature Formulas Converge? 

By Peter R. Lipow and Frank Stenger 

Abstract. Let {Q,} I denote a sequenceof quadrature formulas, Q(f) 
such that Qn(f) -- f J(x) dx for all C C[0, 1]. Let 0 < e < I andasequence {an}= be 
given, where a, > a2 > a3 > , and where a,, 0 as n -* c. Then there exists a function 

C C[0, 1] and a sequence {nkk'=1 such that lf(x)l _ 2a1/l(l - 4E)f, and such that 
f f(x) dx - Qn,(f) = ak, k = 1, 2, 3, 

1. Introduction and Statement of Results. We consider a sequence of quad- 
rature formulas 'I } nn_= defined by 

kn 

(1 .1 ) Qn = E w(n)f(x(n)) 

where { kn n= is a sequence of (increasing) positive integers and 0 < X(n) < 1 for all 
n and j. The quadrature formulas. we assume. are such that 

(1.2) lim Qnf = If f (x) dx 

for all functions f that are continuous on the closed interval [0, 1]; that is, for all f 
in C[0, 1]. For example, the Gaussian quadrature formulas and the well-known 
trapezoidal formulas have these properties. 

In this paper, we show that no matter what the sequence {Qnnc=1 defined by 
(1.1) and (1.2) is, there is a function f in C[0, 1] for which {QJf}c=o converges to 
If very slowly. That is, the assumption of continuity is not enough to insure the rapid 
convergence of any quadrature scheme. More precisely, our main result is the 
following: 

THEOREM 1. Let a sequence of quadrature formulas { Qn nc= defined by (1.1) and 
satisfying (1.2) for a/1 f in C[O, 1] be given, and let a7j be any sequence of numbers 
such that 

(1.3) lim an = 0, 

and 

(1.4) S E an- an+II < C. 
n=1 

Received February 16, 1972. 
AMS 1970 subject classifications. Primary 65D30. 
Key words and phrases. Quadrature rules, convergence. 

Copyright 0 1972, American Mathematical Society 

917 



918 PETER R. LIPOW AND FRANK STENGER 

Corresponding to any e such that 0 < e < 4, there exists a function f that is continuous 
and bounded by 2S/(1 - 4E) on the interval [0, 1], and an increasing sequence of positive 
integers 'n k} 1 sitch that 

(1.5) If - Qkf = ak for k = 1, 2, 

We also have 
COROLLARY 2. For every integer N > 0, ther-e exists a polynomial P bounded 

on the interval [0, 1] by 2S/(1 - 4E) such that 

(1.6) IP - Q,kP = ak for k = 1,2, , N. 

Remark 3. We remark that if the sequence ak }I k is a monotonically increasing 
or decreasing sequence of real numbers, then S = la1. 

In the following section, we will construct the function f of Theorem 1 as a uni- 
formly convergent sum of linear spline functions (broken linear functions) on the 
interval [0, 1]. This constructive proof of Theorem 1 leads to an elementary proof of 
Corollary 2. In the final section, we consider a particular sequence of quadrature 
formulas and show the easier calculation involved in this case. 

Some historical remarks are in order. Let Pn denote the set of polynomials of 
degree n - 1 in x, n = 1, 2, 3, -.. . In 1938, Bernstein [1] proved that, given any 
sequence of positive numbers a, ? a2 > a3 _ * * an > _ , where an -0 
as n -+ o, there exists a function f E C[O, 1] such that 

inf { sup If(x) - p(x)I} = an, n = 1, 2, 3, 
pEP, XE (0,1) 

This result has since been cast in the terminology of best approximation in normed 
linear spaces (Timan [2, p. 40]). From the point of view of practical applications, 
Bernstein's theorem tells us that there are continuous functions defined on the interval 
[0, 1] which cannot be approximated to a desired accuracy by polynomials. 

Our paper extends a recent result of Chui [5] who proved that given {fan }n'=1 a 
sequence of positive numbers which converges monotonically to zero, there exists 
a Riemann integrable function f such that 

f (x) dx f -Z > an for n = 1, 2,5-. 
nk=1 n 

In 1933 Polya [3] constructed an analytic function for which the Newton-Cotes 
quadrature scheme diverges. Polya's result was preceded by an interesting asymp- 
totic estimate of the remainder of Newton-Cotes quadrature due to Ouspensky 
[6]; in [6], Ouspensky concluded that the Newton-Cotes formulas were devoid of 
any practical value. Thus, while proofs of convergence of quadrature schemes applied 
to continuous functions are very interesting (see Polya [3] and Espinoza-Maldonado 
and Byrne [4]), the point of our paper in the spirit of Ouspensky is that when quad- 
rature formulas are applied to continuous functions, the results may be devoid of 
any practical value. 

2. Constructive Proofs. Let Hi denote the set of evaluation points of Qni. 
The function f will be of the form 
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(2.1) f(x) = E aes,(x) 
t =1 

where the s, are to be constructed and the ai are to be determined. 
Choice of ni and Construction of s,(x). We fix e such that 0 < e < 4. Then, 

by (1.2), there is an integer n1 such that 

(2.2) QIQnl - I(I)I < e/2. 

We now define s1 to be the linear spline function whose graph has the vertices 
(i) s,(x) = 1 for all x C IHi, and 
(ii) s,(x) = 0 for all x midway between consecutive points of IlH, and also for 

x c {0, 1 - III. 

Thus, if H = {z1, z, z 3}, we would have the following graph: 

s1(X)~~~~~~~~~~ 

0 z1 z2 z3 

Since s,(x) = 1 on HI, we have, by (2.2), 

(2.3) Qn1 = 1 + 7711 where |1,jI < e/2. 

Also, clearly, 

(2.4) f Sl(x) dx = 2 

We now proceed to the pth stage and suppose we have picked n1, n2, * np_ 
so that 

(2.5) f sj(x) dx = 2 for i = 1, 2, * * , p- 1. 

Let 6p = E/p2P. We cover the union of the II, (i = 1, 2, , p - 1) with a finite 
union of open (and, possibly, half-open) intervals of total length 6p/3. We call this 
union Cp and cover its closure with another union of open (and half-open) intervals, 
BP, this time of total length 26P/3. 

We now define a preliminary function Tp to be continuous on the interval [0, 1] 
and such that 

(i) TP(x) = O for x in Cp, 
(ii) Tp(x) = 1 for x in [0, 1] - BP, and 
(iii) Tp(x) is linear elsewhere. 

Thus, we might have the graph 
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Tp (x) 

p~~~~~~~~~~~~~~~~~~~~ 

z Iz 2 z 1 21 Z2 3 

where the union of the H, is {z1, Z2, z3} . Then, from the definition of T,, we clearly 
have 

(2.6) f (1 - Tp(x)) dx < 2a1/3. 

By (1.2), (2.5) and (2.6) there is an integer np such that 

(2.7) Qnpsl = 12 + 'q for j = 1, 2, . 
, p- 1 where I i I < &P,, and 

QnpTp =1 ?+ 7p where 17q.,I < aP. 
Finally, we define sp(x) to be the linear spline function which is identical to Tp(x) 

on the closure of the set Bp - Cp and whose graph has the following additional 
vertices: 

(i) sp(x) = 1 for x C Hp n ([O, 1] -B), 
(ii) sp(x) = 0 for x C HJPi-I,,xC {0, 1} -HII and x C Hq n Cp 
(iii) sp(x) = 0 for all x halfway between two consecutive "one" vertices so far 

defined, and, 
(iv) sp(x) = 1 for all x halfway between two consecutive "zero" vertices defined 

in (ii). 
Then, sp(x) has the following properties: 

(2.8) QIpsP = Qnp T since sp = TJ on II,. 

(2.9) f sp(x) dx =1. 

(2.10) Qn7p = 0 for i = 1, 2, , p- 1 by (ii). 

In this manner, we pick the subsequence { ni } ,.= and the functions { si } 7=1. 
Determination of a,. We can now apply the linear functional I- Qn, to the 

function f of (2.1), and, at the same time, impose the condition (1.5). We then obtain, 
using (2.6)-(2.10), the following infinite system of linear equations: 

co p-l 

(2.11) 2 E tai - at(4 + 7) - aX(1 - 'qpp)) = a. for p = 1, 2, 2 2=1 1 =1 

If we subtract two such consecutive equations, we obtain the recurrence relation 

(2.12) ap+1(1 + 
77pi+,pi+) 

= ap- ap+, + oa,(2 + 
?7ppp- r+l,p) 

P-1 

+ - aj(mpj - 77,,j). 
i=l 
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Setting a1 = 0, we can use (2.12) to solve for all the a i. 
It should be noted here that the passage from (2.11) to (2.12) is so far only a 

formal one, since the infinite series on the left-hand side of (2.11) has not yet been 
shown to converge. This will be shown in the next part of the proof. 

f is Continuous. In order to complete the proof of Theorem 1 we need only 
show that the ai, as determined above, make the function f of (2.1) continuous on 
the interval [0, 1]. Thus, we must show that the infinite series (2.1) converges uni- 
formly on the interval [0, 1]. Since Isi(x)l < 1 for all x and for every integer i, we 
need only show that 

co 

(2.13) j lapI < c. 
p=1 

Indeed, from (2.12) and the bounds on 77p, given in (2.7), 

1 
~~~p+l 

(2.14) laoP+1 < lap - ap+1i ? 2 IaP ? 2P-1 +1 

We now sum each side of (2.14) from 1 to N, where N is an arbitrary but fixed 
positive integer. Replacing the sum EZ'2 lail on the right-hand side by E ja1 ail 
and adding ' 

aN+11 to the right-hand side, we obtain 
N N 1 N+1 N N+1 

(2.15) EIap+11 E lap- ap+il + -2 E pIaI + E P-1 E ai. 
p= p= 2 p=l p=2 i=1 

Transposing and simplifying gives 

(2.16) E lap+ I{1 - - 2( I <)} -E a - apI < by (1 .4). 

Now letting N -+ on the left, we obtain 

co 2 co 

(2.17) E 
2p+1| 

_ I 4 E laP+1 - aPI. 
P=1 ~~~~p=1 

This completes the proof of Theorem 1. 
Proof of Corollary 2. The proof of Corollary 2 is similar to that of Theorem 1, 

with one exception. Here we also need to use Weierstrass' approximation theorem, 
which enables us to approximate each continuous function sp that we constructed in 
the proof of Theorem 1 by a polynomial qp, such that max.,,,,l] Isp(x) - qp(x)l < 
6p/2 for p = 1, 2, ... , N. We omit the details of this proof. 

3. A Special Case. We consider the following sequence of midpoint quad- 
rature formulas which certainly satisfy (1.2): 

(3.1) Q 2 [n(2l ) ? 2 ? ?2 ) ? ( 21)1 
In this case there are no repeating evaluation points, and we can therefore choose 
ni = i, and define si to be the linear spline whose graph has the vertices 

(i) si(x) = 1 for x E Hi, and 
(ii) s,(x) = 0 for x C HJI , II and also for x = 0, 1. 
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Then, as in (2.9), 

(3.2) f si(x) dx = 2 for all i. o~~~~~~ 

Instead of (2.6) and (2.7), we have the exact relations 

Qisi = 2 if j < i, 

(3.3) = 1 if j= 

= 0 if]> i. 

Instead of (2.1 1), we have 

(3.4) a EI - 2 a ai - ap = ap for p = 1, 2, 2 i=1 2= 

Subtracting two such consecutive equations gives the recurrence relation 

(3.5) a?p+1 = ap - ap+l + lap 

which can be solved explicitly in terms of a1 to give 

ap+l = ap- ap+l + 
I 

(ap1 - ap) 
(3.6) 2 

+- 2(ap-2 - 
ap_) - - (a, -a2)+-F?a,. 

The function f of the form (2.1) is easily seen to be continuous this time, since 

(3.7) E lapI ?< 2 E lap - ap+1l I+ 2 lail. 
p=l p=1 

If we take a1 = 0, we note that 

(3.8) jf(x)l < 2 E lap+, - ap(. 
P=1 \ 
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